Пользовательский поиск
Войти Регистрация

Авторизация

Логин *
Пароль *
Запомнить меня

Регистрация нового пользователя

Поля, помеченные звездочкой (*), обязательны для заполнения.
Имя *
Логин *
Пароль *
Подтвердить пароль *
Email *
E-mail *
Проверочный код *
Reload Captcha

Зарегистируйтесь или войдите с помощью соц.сетей, чтобы получить расширенные возможности

Московский математический папирус

Статья находится в рубриках
0
Московский математический папирус

Четырнадцатая проблема Московского математического папируса (Struve 1930)

осковский математический папирус («математический папирус Голенищева») — один из древнейших известных современности математических текстов. Он был составлен около 1850 до н. э., следовательно, превосходит по древности другой знаменитый древнеегипетский текст, посвящённый разрешению математических задач, — Папирус Ринда (или Папирус Ахмеса), написанный ок. 1650 до н. э., то есть Московский примерно на 200 лет его старше.

Первым владельцем этого папируса был один из основателей русской египтологии Владимир Семёнович Голенищев. Ныне «папирус Голенищева» находится в Музее изобразительных искусств им. А. С. Пушкина в Москве. Основываясь на способе написания курсивного иератического текста, специалисты предполагают, что он принадлежит ко времени правления XI династии (Аменемхетов-Сенусертов) периода Среднего царства Древнего Египта. Возможно, Московский математический папирус был написан при фараоне Сенусерте III или Аменемхете III.

1. Описание Московского математического папируса

Длина Московского математического папируса составляет 5,40 м, а его ширина от 4 до 7 см. Весь текст папируса в 1930 году был разбит основателем марксистской школы исследователей Древнего Востока в СССР Василием Васильевичем Струве на 25 задач, к каждой из которых составитель привёл решение. Большинство задач Московского математического папируса посвящены практическим проблемам, связанным с применением геометрии.

1.1. Задача № M10 Московского математического папируса

Задача № 10 Московского математического папируса, связанная с вычислением поверхности корзины с отверстием 4,5, может сводиться к нахождению площади либо поверхности полушария, либо боковой поверхности полуцилиндра. Во всяком случае, это первый в истории случай определения площади кривой поверхности, требующий использования числа π, которое египтяне определяли ≈ 3,16 = ((16/9)2), тогда как на всём Древнем Ближнем Востоке оно считалось равным трём. Таким образом, Московский математический папирус свидетельствует о том, что египтяне могли с большей точностью вычислять площади треугольника, трапеции, прямоугольника, круга, а также объёмы пирамиды, призмы, параллелепипеда, цилиндра и усечённой пирамиды.

1.2. Задача № M14 Московского математического папируса

Наибольшее внимание египтологов и математиков привлекает четырнадцатая задача Московского математического папируса. Само её существование указывает на то, что древние египтяне умели находить объёмы не только тетраэдра, но и усечённой пирамиды.

Вычисление усеченной пирамиды. Вам скажут: пирамида имеет в высоту 6, её основание - 4, а вершина - 2. Для решения вычислите квадрат 4-х. Получите 16. Сложите 4 и 4. Получите 8. Найдите квадрат от 2-х. Получите 4. Теперь сложите 16, 8 и 4. Это будет 28. Умножьте 1/3 на 6. Это будет 2. Умножьте 2 на 28. Это будет 56. 56 - вот это и есть ответ. Вы решили все правильно.    

Нахождение объема пирамиды

Современное описание условия данной задачи: дана пирамида, верхняя часть которой отделена от нижней так, что нижняя часть пирамиды является четырёхугольной усеченной пирамидой с основаниями, равными соответственно 4 и 2 единицы, при высоте 6 единиц. Необходимо найти объём этого тела.

Нам известно, что объём усеченной пирамиды определяется по формуле:

Формула объема 1

Путём соответствующих вычислений автор папируса определил, что объём пирамиды составляет:

Формула объема 2

Остаётся неизвестным путь нахождения этой формулы.

Между тем, в Вавилоне для решения этой же задачи применили бы менее точную формулу: Формула объема 3

Опубликовано: 03 декабря 2012
Обновлено: 29 мая 2015
Просмотров: 744

Алфавитный указатель

Присоединяйтесь к нам...

Если вы заметили ошибку в тексте, выделите необходимый фрагмент и нажмите Ctrl+Enter, чтобы сообщить об этом администратору сайта

 Orphus